Artificial Intelligence for Computer Vision in Surgery: A Call for Developing Reporting Guidelines

Advances in computing power and the availability of digital data have led to significant progress in artificial intelligence (AI) algorithms. As a result, novel and innovative applications of AI in healthcare continue to surface both in the scientific community and the lay press at a rapid pace. AI is the field of computer science that focuses on the development of algorithms that enable high-level and rational response, interaction, and advanced cognitive and perceptual functions by machines. One area of AI that has particularly bourgeoned over the last decade is computer vision (CV)— an interdisciplinary scientific field that deals with how computers can gain a high-level understanding of digital images or videos and the ability to perform functions, such as object identification and tracking and scene recognition1. Various fields in medicine have had significant success in the development of AI models capable of performing a variety of diagnostic functions using CV (e.g., identifying abnormalities in diagnostic radiology, identifying malignant skin lesions, and interpreting electrocardiograms), and there is potential for similar success in procedural specialties such as surgery. Clinicians and innovators alike have sought to develop AI algorithms capable of improving our ability to provide therapeutic interventions, such as with real-time decision-support and computer-assisted surgery. 计算能力的进步和数字数据的可用性导致了人工智能(AI)算法的重大进展。因此,人工智能在医疗保健领域的新颖和创新的应用继续以很快的速度出现在科学界和非专业媒体上。人工智能是计算机科学的一个领域,其重点是开发算法,使机器能够做出高水平的理性反应、互动以及高级认知和感知功能。在过去十年里,人工智能的一个领域特别蓬勃发展,那就是计算机视觉(CV)–这是一个跨学科的科学领域,涉及到计算机如何获得对数字图像或视频的高层次理解,以及执行功能的能力,如物体识别和跟踪以及场景识别1。医学的各个领域在开发能够使用CV执行各种诊断功能的人工智能模型方面取得了重大成功(例如,在诊断放射学中识别异常,识别恶性皮肤病变,以及解释心电图),并且有可能在外科等程序性专业领域取得类似的成功。临床医生和创新者都在寻求开发能够提高我们提供治疗性干预能力的人工智能算法,如实时决策支持和计算机辅助手术。

阅读更多

新冠复阳的猜想

最近临近春节,COVID-19疫情有了一些反弹。

无论是海外还是本土,都有一些病例是原本确诊的患者,经治疗已康复并经过一段时间的隔离,但是少数还是有复阳的。目前病毒在人体内的定植部位和过程都不清楚,这其实对鼻咽检测的结果提出了挑战,不过没有更适合的大规模低成本的检测方式,也只能先这样应对,北京部分地区还有采用肛门拭子采样检测的。虽然是呼吸感染病毒,但最早可能通过粘膜传播的发现已经提示飞沫可能只是病毒的最便捷传染方式而已,其实只要能穿透生物屏障,即可。而在人体内多个部位定植的可能,说明即便治疗康复的患者,可能因为没有有效的杀灭病毒的治疗手段,在体内仍可能残留定植的病毒,成为未来可能的传染源。所谓的复阳,其实是没有将体内的病毒彻底清除掉。

阅读更多

How to Read Articles That Use Machine Learning

JAMA原文链接

摘要

近年来,许多新的临床诊断工具都是利用复杂的机器学习方法开发出来的。无论诊断工具是如何导出的,都必须通过导出、验证和建立工具的临床有效性3个步骤来评估。基于机器学习的工具还应该评估所使用的机器学习模型的类型及其对输入数据类型和数据集大小的适合性。机器学习模型一般也有额外的预设,称为超参数,必须在独立于验证集的数据集上进行调整。在验证集上,评估模型的结果被称为参考标准。必须对参考标准的严格性进行评估,例如对照普遍接受的金标准或专家评分。

阅读更多

新技术抗疫的方向

今天看了腾讯研究院微信公众号发布的《海外数字抗疫的六大方向》一文,大致分为:1、借助平台优势发布权威信息,协助民众自我筛查;2、利用地理位置信息等筛查追踪密切接触者;3、发挥云计算和大数据优势,助力疫情研判与科研攻关;4、发挥云服务优势,确保资源分配公平合理;5、利用网络平台为社区互助和志愿服务创造条件;6、为远程办公、教育和居家娱乐提供便利

阅读更多

Med_AI学习体会 1

思考的问题

  • 机器学习是否需要理解信息的内容?信息本质规律(或者更准确的说是抽象规律)是否能代表信息本身?这种信息学上抽象逻辑是更本质的?
  • 是否理解信息的内容才是判断智能的基础,而不是仅通过概率来模拟内容?
  • 对于互联网上因立场不同而特意输出的混淆信息,计算机又如何能够识别?

阅读更多

JAMA 康复者血清研究述评

从中国疫情最严重时就在提康复者血清的问题,此前还咨询过免疫和急诊的专家,对康复者血清均持比较谨慎的态度,另外也看血清抗体的纯化程度。3月27日JAMA上刊登了南方科技大学与深圳第三人民医院使用康复者的血清治疗了5名发生呼吸窘迫综合征的新冠肺炎患者的研究结果,说实话感觉如果不是COVID-19,这样的研究不会刊登在JAMA上吧。之后看到同期关于该项康复者血清治疗研究的述评,看起来这篇述评更有意义,貌似前些天看来关注述评内容的人不多,所以再发一下了(好在是free)。

阅读更多